Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(9): e032172, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700022

RESUMO

BACKGROUND: The purpose of this study was to investigate a therapeutic approach targeting the inflammatory response and consequent remodeling from ischemic myocardial injury. METHODS AND RESULTS: Coronary thrombus aspirates were collected from patients at the time of ST-segment-elevation myocardial infarction and subjected to array-based proteome analysis. Clinically indistinguishable at myocardial infarction (MI), patients were stratified into vulnerable and resilient on the basis of 1-year left ventricular ejection fraction and death. Network analysis from coronary aspirates revealed prioritization of tumor necrosis factor-α signaling in patients with worse clinical outcomes. Infliximab, a tumor necrosis factor-α inhibitor, was infused intravenously at reperfusion in a porcine MI model to assess whether infliximab-mediated immune modulation impacts post-MI injury. At 3 days after MI (n=7), infliximab infusion increased proregenerative M2 macrophages in the myocardial border zone as quantified by immunofluorescence (24.1%±23.3% in infliximab versus 9.29%±8.7% in sham; P<0.01). Concomitantly, immunoassays of coronary sinus samples quantified lower troponin I levels (41.72±7.34 pg/mL versus 58.11±10.75 pg/mL; P<0.05) and secreted protein analysis revealed upregulation of injury-modifying interleukin-2, -4, -10, -12, and -18 cytokines in the infliximab-treated cohort. At 4 weeks (n=12), infliximab treatment resulted in significant protective influence, improving left ventricular ejection fraction (53.9%±5.4% versus 36.2%±5.3%; P<0.001) and reducing scar size (8.31%±10.9% versus 17.41%±12.5%; P<0.05). CONCLUSIONS: Profiling of coronary thrombus aspirates in patients with ST-segment-elevation MI revealed highest association for tumor necrosis factor-α in injury risk. Infliximab-mediated immune modulation offers an actionable pathway to alter MI-induced inflammatory response, preserving contractility and limiting adverse structural remodeling.


Assuntos
Modelos Animais de Doenças , Infliximab , Remodelação Ventricular , Infliximab/uso terapêutico , Infliximab/farmacologia , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Remodelação Ventricular/efeitos dos fármacos , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Função Ventricular Esquerda/efeitos dos fármacos , Suínos , Idoso , Fator de Necrose Tumoral alfa/metabolismo , Volume Sistólico/efeitos dos fármacos , Trombose Coronária/prevenção & controle , Trombose Coronária/tratamento farmacológico , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Troponina I/sangue , Troponina I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
2.
Mayo Clin Proc ; 98(3): 372-385, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868745

RESUMO

OBJECTIVE: To ascertain whether heart failure (HF) itself is a senescent phenomenon independent of age, and how this is reflected at a molecular level in the circulating progenitor cell niche, and at a substrate level using a novel electrocardiogram (ECG)-based artificial intelligence platform. PATIENTS AND METHODS: Between October 14, 2016, and October 29, 2020, CD34+ progenitor cells were analyzed by flow cytometry and isolated by magnetic-activated cell sorting from patients of similar age with New York Heart Association functional classes IV (n = 17) and I-II (n = 10) heart failure with reduced ejection fraction and healthy controls (n = 10). CD34+ cellular senescence was quantitated by human telomerase reverse transcriptase expression and telomerase expression by quantitative polymerase chain reaction, and senescence-associated secretory phenotype (SASP) protein expression assayed in plasma. An ECG-based artificial intelligence (AI) algorithm was used to determine cardiac age and difference from chronological age (AI ECG age gap). RESULTS: CD34+ counts and telomerase expression were significantly reduced and AI ECG age gap and SASP expression increased in all HF groups compared with healthy controls. Expression of SASP protein was closely associated with telomerase activity and severity of HF phenotype and inflammation. Telomerase activity was more closely associated with CD34+ cell counts and AI ECG age gap. CONCLUSION: We conclude from this pilot study that HF may promote a senescent phenotype independent of chronological age. We show for the first time that the AI ECG in HF shows a phenotype of cardiac aging beyond chronological age, and appears to be associated with cellular and molecular evidence of senescence.


Assuntos
Insuficiência Cardíaca , Telomerase , Humanos , Inteligência Artificial , Projetos Piloto , Eletrocardiografia , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...